

An Exploration on the Handling of Private Data in the Database and Server

by

Tanamate FOO Yong Qin

A CAPSTONE PROJECT SUBMITTED FOR THE DEGREE OF MASTER OF

COMPUTING

in the

GRADUATE DIVISION

of the

NATIONAL UNIVERSITY OF SINGAPORE

2023

Supervisor:

Dr. Prasanna Karthik VAIRAM

Examiners:

Professor Bimlesh Wadhwa

Table of Contents
Table of Contents .. 2

Abstract .. 3

1 Introduction ... 4

1.1 Problem Statement ... 5

1.2 Background ... 6

1.3 Building a website to Demonstrate GDPR Design Choices ... 6

1.4 Motivation for our work .. 9

2 Performance of MongoDB TTL in relation to GDPR ... 10

2.1 Algorithm for GDPR implementation .. 10

2.2 Results: Accuracy of TTL based deletions .. 11

2.3 Further Results .. 14

2.4 Need for Improvements... 15

3 Proposed Solution .. 16

3.1 Challenges .. 16

3.2 Implementation .. 17

3.3 Accuracy of Proposed Solution ... 18

3.4 Evaluation ... 20

3.5 Results: Effects of stricter or more flexible GDPR requirements 21

3.6 Results: Effect of excessive documents to delete .. 22

3.7 Further Results Evaluation ... 23

4 Conclusion and future work ... 24

Abstract

The German state of Hessia enacted the World's first data privacy law
during the 1970s. Data is the new currency and companies are taking great
efforts protecting them. Since the introduction of the General Data Protection
Regulation (GDPR), implemented by the European Union in 2018, companies not
just in Europe but across the world are needing to protect and remove when
necessary personal data of individuals. The importance of personal data
expiration as mandated by many data protection regulations (DPRs), cannot be
overstated in this contemporary age of digital information. One key common
component that DPRs places significant emphasis on is the principle of data
minimization. This encourages organizations to limit the collection and storage
of personal data to what is strictly necessary for the intended purpose. The
notion of data expiration aligns with this principle by ensuring that personal
information is not retained indefinitely without a valid reason. The time-bound
nature of data retention not only reduces the risk of unauthorized access and
misuse but also respects the privacy rights of individuals. By establishing clear
timelines for the expiration of personal data, DPRs fosters a proactive approach
to data management, compelling organizations to regularly assess the relevance
and necessity of the information they hold. This practice not only enhances data
security but also contributes to building trust between the general public (the
data subjects) and corporations (the data controllers), reinforcing the DPRs
overarching commitment to protecting individuals' rights in the rapidly evolving
digital ecosystem.

This paper aims to explore the implementation of server-side logic to
adhere to DPRs, primarily focusing on the handling of expired personal data.
Using technological frameworks consisting Express for the backend server and
MongoDB for the database, this paper will discuss strategies for optimizing the
backend server as well as the database to ensure the timely deletion of data. By
delving into the intricacies of database management, the paper addresses the
critical need for efficient, secure, and compliant data handling practices. This
dual focus on server-side logic and database optimization, along with
expounding on implementation details within the specified technological
context, hopes to position the paper as a valuable resource for developers,
organizations and researchers who seek practical insights into the nuanced
realm of data protection implementation.

1 Introduction
The General Data Protection Regulation (GDPR) defines private data as any

information related to an identified or identifiable natural person, referred to as
a data subject. This encompasses a broad range of personal identifiers, including
names, identification numbers, location data, online identifiers, and factors
specific to the physical, physiological, genetic, mental, economic, cultural, or
social identity of that individual. Additionally, the GDPR recognizes special
categories of sensitive personal data, such as racial or ethnic origin, political
opinions, religious beliefs etc. The regulation places a high premium on
protecting this private data, requiring organizations to obtain explicit consent for
its processing, ensuring it is deleted after an appropriate amount of time, and
imposing strict security measures to prevent unauthorized access or disclosure.
The GDPR's robust framework aims to safeguard individuals' privacy rights in an
increasingly digitized and interconnected world.

In total the GDPR consists of 7 principles. These include:

1. Lawfulness, fairness, and transparency
2. Purpose limitation
3. Data minimisation
4. Accuracy
5. Storage limitations
6. Integrity and confidentiality
7. Accountability

The solution that this paper aims to provide is in the handling of the
deletion of private data, referring to the fifth principle. Thus, the handling of
obtaining consent as well as security measures to prevent unauthorised access
will be out of scope for this paper. We will explore how to implement an API
which deletes data in a timely manner as well as performance optimizations we
can make to ensure the delay between the actual deletion of data and the legal
required time is kept to a minimum.

1.1 Problem Statement
 The General Data Protection Regulation (GDPR) constitutes a
comprehensive regulatory framework addressing numerous inadequacies in the
management of private data by major corporations. Despite its breadth, there
is yet to be an implementation of a server and database which adheres to the
GDPR privacy policies. Furthermore, a notable concern arises from the lack of
transparency in the implementations adopted by corporations that claim
compliance with GDPR regulations. This issue raises questions about the
effectiveness and verifiability of the measures undertaken by these entities to
ensure data protection and privacy. These shortcomings necessitate a critical
examination of the existing GDPR implementation landscape to enhance its
efficacy and transparency, thereby fortifying the safeguarding of private data in
the corporate domain.

 The removal of outdated data may seem straightforward, but it involves
intricate complexities. In this project, our objective is to explore ways to manage
expired data efficiently and reliably and more importantly measure performance
over others. Efficiency will be determined by an important metric named,
deletion-time-difference (DTD), which will be the difference between the
expected deletion time 1as well as the actual deletion time2.

This paper will focus on the performance and optimization of removing
expired data in the context of the GDPR. Split into 2 sections.

1. The performance of off-the-shelf MongoDB TTL in the context of GDPR
a. Measurements in performance
b. Advantages and drawbacks

2. Proposed solution: Instrumenting MongoDB for accurate deletions
a. Implementation details
b. Measurements in performance
c. Advantages and drawbacks

1 Expected deletion time: The expiry time attached to the document. (t + x)

2 Actual deletion time: The time when the document is removed from the database. (t + x’)

1.2 Background
In the era of data protection, the need for secure handling of private

information prompted the creation of a backend service dedicated to timely data
deletion. This paper explores secure data deletion from the service's inception,
built on a NodeJS backend with MongoDB, to realizing its dependency on
MongoDB's time-to-live (TTL) functionality. We explore why Typescript was
favoured over Java, citing the challenges of Java's static typing. The decision to
choose MongoDB over SQL for storing personal data is clarified, emphasizing the
suitability of NoSQL for sparse datasets. We proceed to discover the critical link
between our service's functionality and the reliability of MongoDB's TTL
mechanism. Subsequently, we studied the performance measurements,
uncovering areas of betterment.

1.3 Building a website to Demonstrate GDPR Design
Choices

In order to understand the underlying technologies to create a GDPR
compliant solution, we came up with one ourselves. This section talks about the
technology stack used, what led to the design choices and finally what motivated
us to do a performance review and optimize how MongoDB handled expired
data.

Using NodeJS with MongoDB: Node.js, a runtime environment for executing
JavaScript on the server side, pairs seamlessly with MongoDB [1], a NoSQL
database renowned for its versatility in handling diverse data types. This
combination proves advantageous in backend systems, where server-side
operations are managed. MongoDB introduces the TTL concept, allowing
automatic document expiration after a specified duration [2]. Node.js facilitates
the interaction with MongoDB through its libraries and drivers, enabling
developers to connect to the database, perform CRUD operations, and leverage
MongoDB's TTL functionality.

This collaborative use of Node.js and MongoDB's TTL functionality offers
an efficient and scalable solution for handling time-sensitive data in the backend,
ensuring automatic management of data expiration without manual
intervention.

Choosing Typescript (NodeJS) Instead of Java: Java is 'statically typed,'
requiring the explicit declaration of variable types during compilation [3]. In Java,
each variable, method parameter, and method return type must be declared
with a specific data type. These types become essential when designing
dedicated setters and getters as they enforce strict type checking. The compiler
ensures these methods accept or return only the correct data type. It contributes
to code robustness and clarity, reducing the likelihood of runtime errors related
to data type mismatches.

Java reflections provide a mechanism for examining or modifying the
runtime behaviour of applications, suiting the requirement for measuring the
TTL of deleted files in the database. Reflections allow inspection of classes,
interfaces, fields, and methods at runtime, providing a dynamic and flexible way
to interact with Java code. While reflections offer versatility, they come with a
performance cost and can lead to less maintainable code due to their dynamic
nature [4]. Moreover, Java reflections are considered not entirely "Java-like"
because they introduce a departure from the language's core principles of strong
typing and compile-time safety. Reflections enable dynamic access to types and
members, circumventing the static type checking enforced by the Java compiler.
This dynamic nature can lead to potential runtime errors that would have been
caught during compilation in a statically typed language [4]. Consequently, using
reflections should be cautiously approached, and alternatives leveraging static
typing and design patterns are often preferred for maintaining code integrity.

TypeScript, especially with Node.js, provides a more flexible and scalable
approach for measuring the TTL of files in a database than Java [5]. TypeScript is
a superset of JavaScript that supports static typing using TypeScript's optional
type annotations. This flexibility allows developers to benefit from static typing
when needed while also taking advantage of the dynamic nature of JavaScript.
Node.js, being event-driven and non-blocking, Node.js is well-suited for tasks like
handling file operations and measuring TTL. Additionally, TypeScript's support
for modern ECMAScript [6] features and its ability to transpile to JavaScript
makes it suitable for building efficient and maintainable backend systems,
including those involving database operations with TTL considerations.

Choosing MongoDB (NoSQL) Instead of Relational SQL: Due to certain
inherent characteristics, there may be better choices than SQL databases for
storing sensitive and personal data. Traditional SQL databases, designed with a
predefined schema, often involve complex table relationships [7]. This relational
structure can complicate access control mechanisms, making it challenging to
implement fine-grained security measures. Additionally, SQL databases may be
susceptible to SQL injection attacks [8], where malicious code is injected into
queries to gain unauthorized access to sensitive information. While suitable for
structured data, the rigid structure of SQL databases can pose challenges in
ensuring the stringent security requirements demanded by sensitive personal
data.

SQL databases are more prone to sparse data, where tables contain many
null or empty values, particularly when dealing with complex or evolving data
models. The structured, tabular format of SQL databases demands a predefined
schema, making it less adaptable to changes in data structure. As a result, when
there are variations in the data, such as optional fields or evolving requirements,
SQL databases may lead to tables with a significant number of empty cells,
indicating sparse data. In contrast, NoSQL databases are schema-less or have
more flexible schemas, allowing for a more natural representation of data and
reducing the likelihood of sparse data.

NoSQL databases like MongoDB are often preferred when dealing with
scenarios like measuring TTL for deleted files. MongoDB has a built-in TTL index
feature that allows developers to set a specific document expiration time [2].
When applied to files that have been deleted, this feature ensures the automatic
removal of the corresponding document after a predefined period. SQL
databases typically lack native support for TTL functionality, and implementing
similar mechanisms can be more complex and require additional development
efforts. MongoDB's built-in TTL support offers a straightforward and efficient
solution for managing the data lifecycle, making it particularly advantageous in
scenarios where the timely deletion of files is crucial.

MongoDB TTL Functionality: Our initial success in implementing the
backend service for timely data deletion led us to a pivotal realization—our
service's efficacy relied heavily on MongoDB's built-in TTL functionality. We
recognized the critical role of dependency in ensuring the secure and timely
removal of private data. MongoDB's TTL mechanism, designed to delete
documents automatically after a specified time, became the linchpin of our data
management strategy.

Motivated by realizing our service's reliance on MongoDB's TTL, we
assessed its performance comprehensively. We sought to understand the
intricacies of how documents were processed over time and the efficiency of the
TTL functionality in practice. Our investigation involved

• analysing the impact of varying data loads,

• examining the responsiveness of the TTL process and

• identifying any bottlenecks that could compromise the timely deletion of

sensitive information.

1.4 Motivation for our work

As our performance measurement unfolded, we uncovered areas within
MongoDB's out-of-the-box TTL functionality that presented opportunities for
improvement. From latency concerns to potential scalability issues, our
exploration illuminated avenues for enhancing the overall efficiency of data
deletion processes. These revelations underscored the importance of careful
performance evaluation and paved the way for meaningful enhancements to the
existing framework. In the subsequent sections, we will delve into the specifics
of our findings and outline the strategies employed to optimize the TTL time of
documents stored on MongoDB.

2 Performance of MongoDB TTL in relation to GDPR
 Performance is measured by the difference between deletion times, as
well as the Reliability. Reliability will be determined by what we will coin as
compliance score, the time taken for 90% of the expired data to be deleted and
the time taken for 100% of the data to be deletion. For example, a compliance
score of 60-120 means that 90% data deletion within 60 seconds and 100% data
deletion within 120 seconds. The lower the numerical values on the compliance
score the higher the reliability.

 To obtain data relating to the performance of MongoDB out-of-the-box
TTL for the deletions of expired data, firstly we need to create a service which
populates the MongoDB collection with documents which are set for deletion.
Secondly to log data so that performance can be visualised, triggers are added
to deletion events. MongoDB triggers is a piece of code that allows server-side
logic to be run after the occurrence of a particular event. This allows the tracking
the deletion time of documents, ensuring that after deletion, the current time
(effectively the actual deletion time) as well as the expected deletion time,
retrieved from the pre-image of the document, is logged.

2.1 Algorithm for GDPR implementation
The summary of the steps are below:

1. Populate N number of documents into the database. Each of these N
documents had expiry times ranging from time (t to t + 10 minutes) in the
future.

2. When a document has expired, MongoDB out-of-the-box TTL functionality
deletes the document. Concurrently a trigger is fired in which the post-
image of the document is sent to the backend server.

3. The backend server calculates the DDT and from subtracting the current
time (actual deletion time) from the expiry time from the post-image
(expected deletion time).

4. The backend server sends it to the log collection for visualization later.

It should be noted that trigger execution naturally consumes resources, this
includes CPU ad memory, which may slow down database and server operations.
This is more prevalent when there are more frequent oncoming events, and
database resources are under contention.

Tanamate Foo Yong Qin
Add to evaluation section as metrics. Also repeat efficiency.

2.2 Results: Accuracy of TTL based deletions
1,000 Documents expiring within 10 minutes.

Compliance Score: 54- 60

10,000 Documents expiring within 10 minutes.

Compliance Score: 54- 60

Percentage of total
expired docs deleted

Time taken to delete (s)

90% 54

100% 60

Percentage of total
expired docs deleted

Time taken to delete (s)

90% 54

100% 60

100,000 Documents expiring within 10 minutes.

Compliance Score: 54-61.

1,000,000 Documents expiring within 10 minutes.

Compliance Score: 254-262.

Percentage of total
expired docs deleted

Time taken to delete (s)

90% 54

100% 61

Deletion Time Difference (sec) count

55 - 60 26876

60 - 65 37494
65 - 70 29766

110 - 115 18678

115 - 120 29875

120 - 125 24308

125 - 130 16857

130 - 135 48025
135 - 140 51989

165 - 170 28537

170 - 175 37085

175 - 180 31816

180 - 185 44840

185 - 190 29160
190 - 195 14595

195 - 200 78817

200 - 205 15294

220 - 225 20611

225 - 230 43800

230 - 235 40025
235 - 240 18507

240 - 245 32826

245 - 250 65123

250 - 255 118369

255 - 260 67900

260 - 265 28827

Total 1000000

Percentage of total
expired docs deleted

Time taken to delete
(s)

90% 254

100% 262

After conducting tests for 1,000 to 1,000,000 documents, we discover that
MongoDB TTL functionality is reasonably reliable up deleting up to 100,000 docs
in 10 minutes.

1,000 – 100,000 expired documents over 10 minutes:

 With a 90% deletion within the first 56 seconds and 100% deletion of
all documents within 60 seconds. Another observation is that the deleted
documents are distributed evenly, further enforcing that the expiry dates of
documents were distributed evenly during the experiment.

1,000,000 expired documents over 10 minutes:

 As we reached a million expiry documents, we notice that reliability
falter. With 90% of expired documents deleted within 254 seconds and 100% of
them deleted within 262 seconds. In addition, we see clusters form in the
distribution3 suggesting that MongoDB may have a specific allocated time for
TTL deletions and if the deletions of the documents were not complete, expired
documents will be pushed back for deletion during the next scheduled period.

 These results also presented us with a concern that MongoDB was
scanning through all the documents for expired ones. This process wastes
valuable resources and so further experiments were done to see if this were the
case.

 To test this hypothesis we conducted experiments to verify if MongoDB
systematically scanned through the database to expire data. In the next 2
experiments we filled the database with 1,000,000 and 10,000,000 expiry
documents respectively. For each we had 10% of the documents expiring within
10 minutes.

3 At 55 to 70, 110 to 140, 165 to 205 and 220 to 265 seconds

2.3 Further Results
1,000,000 Documents, with 10% (100,000) expiring within 10 minutes.

Compliance Score: 54-61

10,000,000 Documents, with 10% (1,000,000) expiring within 10 minutes.

Compliance Score: 169-178

Percentage of total
expired docs deleted

Time taken to delete (s)

90% 54

100% 61

Deletion Time Difference (sec) count
55 - 60 4288

60 - 65 28989

65 - 70 27840

70 - 75 34989

85 - 90 7056

90 - 95 28844

95 - 100 48062

100 - 105 40767

105 - 110 18401

120 - 125 13261

125 - 130 60761

130 - 135 79418

135 - 140 44028

140 - 145 15292

145 - 150 63590

150 - 155 68456

155 - 160 123847

160 - 165 113524

165 - 170 117009

170 - 175 45266

175 - 180 16312

Total 1000000

Percentage of total
expired docs deleted

Time taken to delete
(s)

90% 169

100% 178

The analysis of the experimental results underscores a consistent
observation regarding MongoDB's document scanning capabilities. Notably, the
first set of results, where 1,000,000 Documents, with 10% (100,000) expiring
within 10 minutes, clearly indicate that MongoDB does not systematically scan
through all documents. This inference is substantiated by the fact that if
MongoDB were indeed scanning through all documents, the experiments
involving larger datasets would logically have exhibited longer processing times.

Additionally, the evaluation of the deletion process, wherein 1,000,000

documents were removed within a 10-minute timeframe (with a total dataset of
10,000,000 documents), revealed a persistent performance inadequacy. Despite
the seemingly substantial scale of data processed, the efficiency of the deletion
operation remained suboptimal. Furthermore, an examination of the data
distributions in both experiments involving the deletion of a million documents
revealed a striking similarity. This consistency in data distribution patterns
highlights an aspect that warrants closer scrutiny, as it suggests a potential
systemic issue that persists across various experimental conditions.

2.4 Need for Improvements
The experimental outcomes underscore significant shortcomings in

MongoDB's TTL document deletion functionality. Deleting over a million
documents per second proved to be slow and yielded unreliable results.
Moreover, the rigid scanning process, occurring at fixed intervals of every minute,
does not align with the flexibility required to meet diverse privacy needs.
Different privacy regulations may demand varying levels of tolerance or
immediacy in data deletion, highlighting the necessity for MongoDB to enhance
its efficiency and adaptability in handling document deletions to better align
with the dynamic demands of privacy frameworks.

3 Proposed Solution
 To improve the performance of deletions, documents will be separated
into buckets according to how close how close the documents are to deletion.
As time passes a scheduler will move documents from later buckets to earlier
buckets.

 During insertion, documents are added to the corresponding bucket. In
the example below, as well as during most of the performance tests, these
buckets include the 1-minute bucket, 5-minute bucket and the rest bucket (the
bucket where all other documents will fit in). The number of buckets as well as
the interval that each bucket is allocated can be tuned accordingly.

3.1 Challenges
To implement our algorithm involving buckets, one of the first prototypes

involved editing MongoDB source code to add the document ids and expiry
times into the buckets which was saved and running directly on C++. Arguably,
this implementation would have been much faster, however this proved too
much of a challenge. Although it was simple to find the entry point in the code
for insertions, we were unable to find the entry point for deletions. Ultimately,
we had to move on from this task and settled with implementing our time-
stamped buckets straight in Node.js.

Expiry:
10:01

Current time: 10:00

1-minute
bucket

5-minute
bucket

Rest
bucket

Expiry:
10:02

Expiry:
10:08

3.2 Implementation
Using the same knowledge of MongoDB triggers, we managed to

implement something very similar to that of adding the buckets in the source-
code. Despite this, the implementation we arrived at was arguably slower due
to the fact it was written in a higher-level language and required an additional
point of entry for the MongoDB trigger, at insertion of the document, naturally
consumes resources which may slow down database and server operations.
Shown below is the algorithm implemented to measure deletion times with the
proposed solution.

The summary of the experimentation steps:

1. Populate N number of documents into the database. Each of these N
documents had expiry times ranging from time t to t + 10 minutes in the
future.

2. When a document is inserted, a trigger is fired to store the IDs as well as
the expiry time in one of 3 buckets, corresponding to when the documents
expire.

3. After every minute, documents that that are in the 1-minute bucket are
sent to MongoDB for deletion.

4. A trigger is fired for each document during deletion and the post-image of
the document is sent to the backend server.

5. The backend server calculates the DDT and from subtracting the current
time (actual deletion time) from the expiry time from the post-image
(expected deletion time).

6. The backend server sends it to the log collection for visualization later.

3.3 Accuracy of Proposed Solution
1,000 Documents expiring within 10 minutes.

Compliance Score

10,000 Documents expiring within 10 minutes.

Compliance Score: 54-61

Percentage of total
expired docs deleted

Time taken to delete
(s)

90% 53

100% 60

Percentage of total
expired docs deleted

Time taken to delete
(s)

90% 54

100% 61

100,000 Documents expiring within 10 minutes.

Compliance Score: 55-64

1,00,000 Documents expiring within 10 minutes.

Compliance Score: 86-110

Execution time: 11.1s

Percentage of total
expired docs deleted

Time taken to delete
(s)

90% 55

100% 64

Deletion Time Difference (sec) count
0 - 10 97895
15 - 25 200810
30 - 40 252550
45 - 55 234873
60 - 70 153786
75 - 85 53867
90 - 100 6012
105 - 115 207
Total 1,000,000

Percentage of total
expired docs deleted

Time taken to delete
(s)

90% 86

100% 110

3.4 Evaluation
The comparative analysis between the optimized solution and MongoDB's

TTL functionality yielded noteworthy insights into their respective performances.
In scenarios involving up to 100,000 documents, both solutions demonstrated
similar efficiency. However, as the dataset scaled to 1,000,000 documents, our
optimized solution outshone MongoDB's TTL implementation. The optimized
solution exhibited significantly superior deletion times and compliance scores,
reflecting a marked improvement in performance.

Notably, for a million documents, 90% of the data was deleted in an
impressive 86 seconds, whereas MongoDB's TTL required at least 169 seconds
for the same deletion percentage. Furthermore, for the complete deletion of the
dataset, our solution achieved 100% in the same 86 seconds, while MongoDB's
TTL implementation took a minimum of 178 seconds. These findings underscore
a substantial enhancement in efficiency and efficacy with our optimized solution
compared to the baseline provided by MongoDB's TTL functionality.

While our solution has demonstrated notable improvements in deletion
times and compliance scores compared to MongoDB's TTL functionality, there
are certain downsides that should be considered. Firstly, our initial expectation
was for deletions to have a maximum deletion-time-difference (DTD) close to the
final bucket size, such as one minute. However, the observed DTD is 2 minutes,
suggesting a potential bottleneck in the services related to the movement of
data between buckets. This discrepancy may be attributed to triggers potentially
interfering with performance during insertions and deletions, thereby impacting
the accuracy of our measurements. Additionally, in terms of resource utilization,
our solution incurs a memory cost of 16MB for storing 1,000,000 entries,
considering 4 bytes for the datetime of expiry and 12 bytes for the MongoDB id.
While this represents relatively low memory usage for a dataset of this scale, it
is crucial to monitor memory and computation overhead as the solution scales
to ensure optimal performance. Addressing these downsides will be pivotal in
refining the overall efficiency and reliability of our solution.

3.5 Results: Effects of stricter or more flexible GDPR
requirements

1,00,000 Documents expiring within 10 minutes (30 Second Final Bucket).

 Compliance Score: 51-61

Average Deletion Time: 6.0s

1,00,000 Documents expiring within 10 minutes (2 Minute Minimum Bucket).

Compliance Score: 205-233

Average Deletion Time: 24.1s

Deletion Time Difference (sec) count

0 - 5 38764

5 - 10 72886

10 - 15 105956

15 - 20 138820

20 - 25 159532

25 - 30 150335

30 - 35 128115

35 - 40 96609

40 - 45 63671

45 - 50 30966

50 - 55 10737

55 - 60 3027

60 - 65 582

Total 1000000

Deletion Time Difference (sec) count
0 - 10 18496
10 - 20 27747
20 - 30 37619
30 - 40 47723
40 - 50 57409
50 - 60 66810
60 - 70 78185
70 - 80 87512
80 - 90 93157
90 - 100 88035
100 - 110 75488
110 - 120 62654
120 - 130 52613
130 - 140 46280
140 - 150 40448
150 - 160 33937
160 - 170 27286
170 - 180 20423
180 - 190 14258
190 - 200 10444
200 - 210 7390
210 - 220 4474
220 - 230 1514
230 - 240 98
Total 1000000

3.6 Results: Effect of excessive documents to delete

10,000,000 Documents, with 10% (100,000) expiring within
10 minutes.

Compliance Score: 106-126

Average Deletion time: 11.6 s

Deletion Time
Difference (sec) count

0 - 10 50536
10 - 20 91464
20 - 30 133620
30 - 40 160015
40 - 50 165468
50 - 60 148647
60 - 70 113269
70 - 80 71924
80 - 90 35570
90 - 100 17133
100 - 110 8472
110 - 120 3363
120 - 130 519
Total 1000000

3.7 Further Results Evaluation
The exploration of additional parameters in our optimized solution has

yielded insightful results. By implementing a 30-second and 2-minute deletion
bucket as the final layer, we observed a notable improvement in reliability,
showcasing the adaptability of our solution to different temporal configurations.
The introduction of buckets not only enhanced reliability but also provided a
dynamic avenue for adjusting compliance scores based on specific requirements.
These findings underscore the flexibility inherent in our solution, allowing us to
tailor the deletion process to varying needs. Furthermore, the nuanced
examination of these parameters reveals the capability to modulate the
reliability of data deletions by adjusting the frequency of scheduled deletions.
This flexibility is instrumental, enabling us to scale the solution efficiently based
on dataset size and aligning with the compliance standards dictated by
regulations such as GDPR. Overall, these results reinforce the versatility and
efficacy of our optimized solution in meeting diverse operational and compliance
demands.

When handling datasets exceeding 10,000,000 documents (over 160MB of
data), some limitations Node.js encountered were in managing such large
volumes of data in memory. This may necessitate the consideration of using an
additional database for storing the buckets containing documents that are
meant to expire at a temporally distant period, as a potential avenue for future
work. This issue underscores the importance of optimizing memory usage to
accommodate larger datasets efficiently. Additionally, an unexpected outcome
was noted concerning the maximum deletion-time-difference (DTD) and the
final bucket size. Contrary to the initial expectation that a 2-minute bucket would
yield a maximum DTD of 2 minutes, the observed time was 4 minutes.
Nonetheless, the positive correlation between reducing bucket size and
enhanced reliability provides an avenue for potential optimization, allowing for
more efficient and reliable data deletions through the adjustment of temporal
parameters. These insights contribute to refining our solution and suggest areas
for future exploration and improvement.

4 Conclusion and future work
In conclusion, our investigation highlights potential limitations in the

flexibility of MongoDB's TTL functionality for the secure deletion of private data,
prompting the exploration of alternative solutions. Our proposed optimization,
involving the storage of expired data in buckets and a scheduled expiry process
trickling data across descending buckets, has shown promise as a viable
alternative. However, it is important to acknowledge certain drawbacks
associated with this approach. Notably, the use of triggers during insertions and
the storage of all data in buckets in RAM, irrespective of deletion times,
contribute to increased CPU and memory overhead. These considerations point
towards areas for future work, emphasizing the need for refining our solution to
mitigate these drawbacks and enhance overall efficiency. Further exploration
may involve optimizing or even completely removing the need for trigger
mechanisms, exploring alternative storage strategies, and fine-tuning the
balance between computational resources and deletion performance to create
a more robust and scalable solution for the secure management of private data.

In pursuit of future enhancements, potential improvements to our proposed
solution could involve directly modifying the MongoDB source code to
implement data storage in buckets, eliminating the need for triggers during
insertions. As the use of triggers themselves take up recourses, this modification
aims to streamline the deletion process and reduce potential performance
bottlenecks.

An additonal avenue for optimization would be to reconsider the storage
strategy, shifting from storing all data in RAM-based lists to maintaining buckets
within the database itself. This adjustment could alleviate the heightened CPU
and memory overhead associated with the current implementation,
contributing to a more resource-efficient and scalable solution for managing
private data deletion. These considerations provide valuable directions for
further research and development, emphasizing the dynamic nature of ongoing
efforts to refine and optimize data management processes.

Alternative solution worth considering is using bloom filters to handle storing
documents due for deletion. Bloom filters are a space-efficient probabilistic data
structure designed to test whether a given element is a member of a set or not.
However, false positives can occur, indicating membership when the element is
not present. Bloom filters are particularly useful in scenarios where memory is
constrained, and a small probability of false positives is acceptable. This may be
useful when requests are made to the backend-server for some private data and
the server may check the data against a bloom filter if the requested data should
be sent back to the requestor.

5 Bibliography
[1] Cubet, “Combining NodeJS and NoSQL- Why MongoDB is the best choice?,” Cubettech, Oct. 01,
2017. https://cubettech.com/resources/blog/combining-nodejs-and-nosql-why-mongodb-is-the-
best-choice/

[2] MongoDB, “TTL Indexes — MongoDB Manual,” www.mongodb.com, 2023.
https://www.mongodb.com/docs/manual/core/index-ttl/

[3] A. Doukas, “Solwey Consulting - Static vs Dynamic Typing: Choosing the Right Approach for Your
Programming Needs,” www.solwey.com, 2023. https://www.solwey.com/posts/static-vs-dynamic-
typing-choosing-the-right-approach-for-your-programming-needs

[4] O. M. Tacu, “Is Java Reflection Bad Practice?,” Baeldung, 2023. https://www.baeldung.com/java-
reflection-benefits-drawbacks

[5] F. Musyoka, “How to use TypeScript with Node.js,” Engineering Education (EngEd) Program |
Section, 2021. https://www.section.io/engineering-education/how-to-use-typescript-with-nodejs/

[6] TypeScript, “Documentation - TypeScript 4.7,” www.typescriptlang.org, 2023.
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-4-7.html (accessed Dec.
03, 2023).

[7] H. Manoj, “Advantages And Disadvantages of SQL?,” Skill Vertex, Aug. 08, 2023.
https://www.skillvertex.com/blog/advantages-and-disadvantages-of-sql/

[8] OWASP, “SQL Injection,” OWASP, 2013. https://owasp.org/www-
community/attacks/SQL_Injection

https://cubettech.com/resources/blog/combining-nodejs-and-nosql-why-mongodb-is-the-best-choice/
https://cubettech.com/resources/blog/combining-nodejs-and-nosql-why-mongodb-is-the-best-choice/
https://www.mongodb.com/docs/manual/core/index-ttl/
https://www.solwey.com/posts/static-vs-dynamic-typing-choosing-the-right-approach-for-your-programming-needs
https://www.solwey.com/posts/static-vs-dynamic-typing-choosing-the-right-approach-for-your-programming-needs
https://www.baeldung.com/java-reflection-benefits-drawbacks
https://www.baeldung.com/java-reflection-benefits-drawbacks
https://www.section.io/engineering-education/how-to-use-typescript-with-nodejs/
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-4-7.html%20(accessed%20Dec.%2003,%202023).
https://www.typescriptlang.org/docs/handbook/release-notes/typescript-4-7.html%20(accessed%20Dec.%2003,%202023).
https://www.skillvertex.com/blog/advantages-and-disadvantages-of-sql/
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/SQL_Injection

	Dr. Prasanna Karthik VAIRAM
	Professor Bimlesh Wadhwa
	Table of Contents
	Abstract

	1 Introduction
	1.1 Problem Statement
	1.2 Background
	1.3 Building a website to Demonstrate GDPR Design Choices
	1.4 Motivation for our work

	2 Performance of MongoDB TTL in relation to GDPR
	2.1 Algorithm for GDPR implementation
	2.2 Results: Accuracy of TTL based deletions
	2.3 Further Results
	2.4 Need for Improvements

	3 Proposed Solution
	3.1 Challenges
	3.2 Implementation
	3.3 Accuracy of Proposed Solution
	3.4 Evaluation
	3.5 Results: Effects of stricter or more flexible GDPR requirements
	3.6 Results: Effect of excessive documents to delete
	3.7 Further Results Evaluation

	4 Conclusion and future work

